Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int J Mol Sci ; 24(4)2023 Feb 06.
Article in English | MEDLINE | ID: covidwho-2233318

ABSTRACT

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a crucial role in its life cycle. The Mpro-mediated limited proteolysis of the viral polyproteins is necessary for the replication of the virus, and cleavage of the host proteins of the infected cells may also contribute to viral pathogenesis, such as evading the immune responses or triggering cell toxicity. Therefore, the identification of host substrates of the viral protease is of special interest. To identify cleavage sites in cellular substrates of SARS-CoV-2 Mpro, we determined changes in the HEK293T cellular proteome upon expression of the Mpro using two-dimensional gel electrophoresis. The candidate cellular substrates of Mpro were identified by mass spectrometry, and then potential cleavage sites were predicted in silico using NetCorona 1.0 and 3CLP web servers. The existence of the predicted cleavage sites was investigated by in vitro cleavage reactions using recombinant protein substrates containing the candidate target sequences, followed by the determination of cleavage positions using mass spectrometry. Unknown and previously described SARS-CoV-2 Mpro cleavage sites and cellular substrates were also identified. Identification of target sequences is important to understand the specificity of the enzyme, as well as aiding the improvement and development of computational methods for cleavage site prediction.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , HEK293 Cells , Cysteine Endopeptidases/metabolism , Electrophoresis , Protease Inhibitors/chemistry , Molecular Docking Simulation
2.
Int J Mol Sci ; 23(7)2022 Mar 30.
Article in English | MEDLINE | ID: covidwho-2216285

ABSTRACT

Mapping non-canonical cellular pathways affected by approved medications can accelerate drug repurposing efforts, which are crucial in situations with a global impact such as the COVID-19 pandemic. Fluoxetine and fluvoxamine are well-established and widely-used antidepressive agents that act as serotonin reuptake inhibitors (SSRI-s). Interestingly, these drugs have been reported earlier to act as lysosomotropic agents, inhibitors of acid sphingomyelinase in the lysosomes, and as ligands of sigma-1 receptors, mechanisms that might be used to fight severe outcomes of COVID-19. In certain cases, these drugs were administered for selected COVID-19 patients because of their antidepressive effects, while in other cases, clinical studies were performed to assess the effect of these drugs on treating COVID-19 patients. Clinical studies produced promising data that encourage the further investigation of fluoxetine and fluvoxamine regarding their use in COVID-19. In this review, we summarize experimental data and the results of the performed clinical studies. We also provide an overview of previous knowledge on the tissue distribution of these drugs and by integrating this information with the published experimental results, we highlight the real opportunity of using these drugs in our fight against COVID-19.


Subject(s)
COVID-19 Drug Treatment , Fluvoxamine , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Fluvoxamine/pharmacology , Fluvoxamine/therapeutic use , Humans , Pandemics , SARS-CoV-2 , Selective Serotonin Reuptake Inhibitors/pharmacology , Selective Serotonin Reuptake Inhibitors/therapeutic use
3.
Int J Mol Sci ; 23(7)2022 Mar 23.
Article in English | MEDLINE | ID: covidwho-2216278

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome 2 (SARS-CoV-2), has been one of the most devastating pandemics of recent times. The lack of potent novel antivirals had led to global health crises; however, emergence and approval of potent inhibitors of the viral main protease (Mpro), such as Pfizer's newly approved nirmatrelvir, offers hope not only in the therapeutic front but also in the context of prophylaxis against the infection. By their nature, RNA viruses including human immunodeficiency virus (HIV) have inherently high mutation rates, and lessons learnt from previous and currently ongoing pandemics have taught us that these viruses can easily escape selection pressure through mutation of vital target amino acid residues in monotherapeutic settings. In this paper, we review nirmatrelvir and its binding to SARS-CoV-2 Mpro and draw a comparison to inhibitors of HIV protease that were rendered obsolete by emergence of resistance mutations, emphasizing potential pitfalls in the design of inhibitors that may be of important relevance to the long-term use of novel inhibitors against SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Protease Inhibitors , Antiviral Agents/chemistry , Coronavirus 3C Proteases , HIV Protease/genetics , Humans , Molecular Docking Simulation , Peptide Hydrolases , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2
4.
Front Immunol ; 13: 999233, 2022.
Article in English | MEDLINE | ID: covidwho-2109767

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease-19 (COVID-19). The spike protein (S) of SARS-CoV-2 plays a crucial role in mediating viral infectivity; hence, in an extensive effort to curb the pandemic, many urgently approved vaccines rely on the expression of the S protein, aiming to induce a humoral and cellular response to protect against the infection. Given the very limited information about the effects of intracellular expression of the S protein in host cells, we aimed to characterize the early cellular transcriptomic changes induced by expression of the S protein in THP-1-derived macrophage-like cells. Results showed that a wide variety of genes were differentially expressed, products of which are mainly involved in cell adhesion, homeostasis, and most notably, antiviral and immune responses, depicted by significant downregulation of protocadherins and type I alpha interferons (IFNAs). While initially, the levels of IFNAs were higher in the medium of S protein expressing cells, the downregulation observed on the transcriptomic level might have been reflected by no further increase of IFNA cytokines beyond the 5 h time-point, compared to the mock control. Our study highlights the intrinsic pathogenic role of the S protein and sheds some light on the potential drawbacks of its utilization in the context of vaccination strategies.


Subject(s)
COVID-19 , Interferon Type I , Humans , Spike Glycoprotein, Coronavirus , SARS-CoV-2 , Antiviral Agents/pharmacology , Protocadherins , Immunity , Macrophages/metabolism
5.
International Journal of Molecular Sciences ; 23(7):3507, 2022.
Article in English | MDPI | ID: covidwho-1762502

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome 2 (SARS-CoV-2), has been one of the most devastating pandemics of recent times. The lack of potent novel antivirals had led to global health crises;however, emergence and approval of potent inhibitors of the viral main protease (Mpro), such as Pfizer's newly approved nirmatrelvir, offers hope not only in the therapeutic front but also in the context of prophylaxis against the infection. By their nature, RNA viruses including human immunodeficiency virus (HIV) have inherently high mutation rates, and lessons learnt from previous and currently ongoing pandemics have taught us that these viruses can easily escape selection pressure through mutation of vital target amino acid residues in monotherapeutic settings. In this paper, we review nirmatrelvir and its binding to SARS-CoV-2 Mpro and draw a comparison to inhibitors of HIV protease that were rendered obsolete by emergence of resistance mutations, emphasizing potential pitfalls in the design of inhibitors that may be of important relevance to the long-term use of novel inhibitors against SARS-CoV-2.

6.
International Journal of Molecular Sciences ; 23(7):3812, 2022.
Article in English | MDPI | ID: covidwho-1762461

ABSTRACT

Mapping non-canonical cellular pathways affected by approved medications can accelerate drug repurposing efforts, which are crucial in situations with a global impact such as the COVID-19 pandemic. Fluoxetine and fluvoxamine are well-established and widely-used antidepressive agents that act as serotonin reuptake inhibitors (SSRI-s). Interestingly, these drugs have been reported earlier to act as lysosomotropic agents, inhibitors of acid sphingomyelinase in the lysosomes, and as ligands of sigma-1 receptors, mechanisms that might be used to fight severe outcomes of COVID-19. In certain cases, these drugs were administered for selected COVID-19 patients because of their antidepressive effects, while in other cases, clinical studies were performed to assess the effect of these drugs on treating COVID-19 patients. Clinical studies produced promising data that encourage the further investigation of fluoxetine and fluvoxamine regarding their use in COVID-19. In this review, we summarize experimental data and the results of the performed clinical studies. We also provide an overview of previous knowledge on the tissue distribution of these drugs and by integrating this information with the published experimental results, we highlight the real opportunity of using these drugs in our fight against COVID-19.

7.
Virol J ; 17(1): 190, 2020 11 26.
Article in English | MEDLINE | ID: covidwho-945221

ABSTRACT

BACKGROUND: The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in millions of infections worldwide. While the search for an effective antiviral is still ongoing, experimental therapies based on repurposing of available antivirals is being attempted, of which HIV protease inhibitors (PIs) have gained considerable interest. Inhibition profiling of the PIs directly against the viral protease has never been attempted in vitro, and while few studies reported an efficacy of lopinavir and ritonavir in SARS-CoV-2 context, the mechanism of action of the drugs remains to be validated. METHODS: We carried out an in-depth analysis of the efficacy of HIV PIs against the main protease of SARS-CoV-2 (Mpro) in cell culture and in vitro enzymatic assays, using a methodology that enabled us to focus solely on any potential inhibitory effects of the inhibitors against the viral protease. For cell culture experiments a dark-to-bright GFP reporter substrate system was designed. RESULTS: Lopinavir, ritonavir, darunavir, saquinavir, and atazanavir were able to inhibit the viral protease in cell culture, albeit in concentrations much higher than their achievable plasma levels, given their current drug formulations. While inhibition by lopinavir was attributed to its cytotoxicity, ritonavir was the most effective of the panel, with IC50 of 13.7 µM. None of the inhibitors showed significant inhibition of SARS-CoV-2 Mpro in our in vitro enzymatic assays up to 100 µM concentration. CONCLUSION: Targeting of SARS-CoV-2 Mpro by some of the HIV PIs might be of limited clinical potential, given the high concentration of the drugs required to achieve significant inhibition. Therefore, given their weak inhibition of the viral protease, any potential beneficial effect of the PIs in COVID-19 context might perhaps be attributed to acting on other molecular target(s), rather than SARS-CoV-2 Mpro.


Subject(s)
Coronavirus 3C Proteases/metabolism , HIV Protease Inhibitors/pharmacology , SARS-CoV-2/enzymology , Cell Survival/drug effects , HEK293 Cells , Humans , Inhibitory Concentration 50 , Proteolysis/drug effects , SARS-CoV-2/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL